home *** CD-ROM | disk | FTP | other *** search
Wrap
SSSSTTTTPPPPSSSSVVVV((((3333SSSS)))) SSSSTTTTPPPPSSSSVVVV((((3333SSSS)))) NNNNAAAAMMMMEEEE SSSSTTTTPPPPSSSSVVVV, DDDDTTTTPPPPSSSSVVVV, CCCCTTTTPPPPSSSSVVVV, ZZZZTTTTPPPPSSSSVVVV - Solves a real or complex triangular packed system of equations SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS Single precision Fortran: CCCCAAAALLLLLLLL SSSSTTTTPPPPSSSSVVVV ((((_u_p_l_o,,,, _t_r_a_n_s,,,, _d_i_a_g,,,, _n,,,, _a_p,,,, _x,,,, _i_n_c_x)))) C/C++: ####iiiinnnncccclllluuuuddddeeee <<<<ssssccccssssllll____bbbbllllaaaassss....hhhh>>>> vvvvooooiiiidddd ssssttttppppssssvvvv ((((cccchhhhaaaarrrr *_u_p_l_o,,,, cccchhhhaaaarrrr *_t_r_a_n_s,,,, cccchhhhaaaarrrr *_d_i_a_g,,,, iiiinnnntttt _n,,,, ffffllllooooaaaatttt *_a_p,,,, ffffllllooooaaaatttt *_x,,,, iiiinnnntttt _i_n_c_x))));;;; Double precision Fortran: CCCCAAAALLLLLLLL DDDDTTTTPPPPSSSSVVVV ((((_u_p_l_o,,,, _t_r_a_n_s,,,, _d_i_a_g,,,, _n,,,, _a_p,,,, _x,,,, _i_n_c_x)))) C/C++: ####iiiinnnncccclllluuuuddddeeee <<<<ssssccccssssllll____bbbbllllaaaassss....hhhh>>>> vvvvooooiiiidddd ddddttttppppssssvvvv ((((cccchhhhaaaarrrr *_u_p_l_o,,,, cccchhhhaaaarrrr *_t_r_a_n_s,,,, cccchhhhaaaarrrr *_d_i_a_g,,,, iiiinnnntttt _n,,,, ddddoooouuuubbbblllleeee *_a_p,,,, ddddoooouuuubbbblllleeee *_x,,,, iiiinnnntttt _i_n_c_x))));;;; Single precision complex Fortran: CCCCAAAALLLLLLLL CCCCTTTTPPPPSSSSVVVV ((((_u_p_l_o,,,, _t_r_a_n_s,,,, _d_i_a_g,,,, _n,,,, _a_p,,,, _x,,,, _i_n_c_x)))) C/C++: ####iiiinnnncccclllluuuuddddeeee <<<<ssssccccssssllll____bbbbllllaaaassss....hhhh>>>> vvvvooooiiiidddd ccccttttppppssssvvvv ((((cccchhhhaaaarrrr *_u_p_l_o,,,, cccchhhhaaaarrrr *_t_r_a_n_s,,,, cccchhhhaaaarrrr *_d_i_a_g,,,, iiiinnnntttt _n,,,, ssssccccssssllll____ccccoooommmmpppplllleeeexxxx *_a_p,,,, ssssccccssssllll____ccccoooommmmpppplllleeeexxxx *_x,,,, iiiinnnntttt _i_n_c_x))));;;; C++ STL: ####iiiinnnncccclllluuuuddddeeee <<<<ccccoooommmmpppplllleeeexxxx....hhhh>>>> ####iiiinnnncccclllluuuuddddeeee <<<<ssssccccssssllll____bbbbllllaaaassss....hhhh>>>> vvvvooooiiiidddd ccccttttppppssssvvvv ((((cccchhhhaaaarrrr *_u_p_l_o,,,, cccchhhhaaaarrrr *_t_r_a_n_s,,,, cccchhhhaaaarrrr *_d_i_a_g,,,, iiiinnnntttt _n,,,, ccccoooommmmpppplllleeeexxxx<<<<ffffllllooooaaaatttt>>>> *_a_p,,,, ccccoooommmmpppplllleeeexxxx<<<<ffffllllooooaaaatttt>>>> *_x,,,, iiiinnnntttt _i_n_c_x))));;;; Double precision complex Fortran: CCCCAAAALLLLLLLL ZZZZTTTTPPPPSSSSVVVV ((((_u_p_l_o,,,, _t_r_a_n_s,,,, _d_i_a_g,,,, _n,,,, _a_p,,,, _x,,,, _i_n_c_x)))) C/C++: ####iiiinnnncccclllluuuuddddeeee <<<<ssssccccssssllll____bbbbllllaaaassss....hhhh>>>> vvvvooooiiiidddd zzzzttttppppssssvvvv ((((cccchhhhaaaarrrr *_u_p_l_o,,,, cccchhhhaaaarrrr *_t_r_a_n_s,,,, cccchhhhaaaarrrr *_d_i_a_g,,,, iiiinnnntttt _n,,,, ssssccccssssllll____zzzzoooommmmpppplllleeeexxxx *_a_p,,,, ssssccccssssllll____zzzzoooommmmpppplllleeeexxxx *_x,,,, iiiinnnntttt _i_n_c_x))));;;; PPPPaaaaggggeeee 1111 SSSSTTTTPPPPSSSSVVVV((((3333SSSS)))) SSSSTTTTPPPPSSSSVVVV((((3333SSSS)))) C++ STL: ####iiiinnnncccclllluuuuddddeeee <<<<ccccoooommmmpppplllleeeexxxx....hhhh>>>> ####iiiinnnncccclllluuuuddddeeee <<<<ssssccccssssllll____bbbbllllaaaassss....hhhh>>>> vvvvooooiiiidddd zzzzttttppppssssvvvv ((((cccchhhhaaaarrrr *_u_p_l_o,,,, cccchhhhaaaarrrr *_t_r_a_n_s,,,, cccchhhhaaaarrrr *_d_i_a_g,,,, iiiinnnntttt _n,,,, ccccoooommmmpppplllleeeexxxx<<<<ddddoooouuuubbbblllleeee>>>> *_a_p,,,, ccccoooommmmpppplllleeeexxxx<<<<ddddoooouuuubbbblllleeee>>>> *_x,,,, iiiinnnntttt _i_n_c_x))));;;; IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN These routines are part of the SCSL Scientific Library and can be loaded using either the ----llllssssccccssss or the ----llllssssccccssss____mmmmpppp option. The ----llllssssccccssss____mmmmpppp option directs the linker to use the multi-processor version of the library. When linking to SCSL with ----llllssssccccssss or ----llllssssccccssss____mmmmpppp, the default integer size is 4 bytes (32 bits). Another version of SCSL is available in which integers are 8 bytes (64 bits). This version allows the user access to larger memory sizes and helps when porting legacy Cray codes. It can be loaded by using the ----llllssssccccssss____iiii8888 option or the ----llllssssccccssss____iiii8888____mmmmpppp option. A program may use only one of the two versions; 4-byte integer and 8-byte integer library calls cannot be mixed. The C and C++ prototypes shown above are appropriate for the 4-byte integer version of SCSL. When using the 8-byte integer version, the variables of type iiiinnnntttt become lllloooonnnngggg lllloooonnnngggg and the <<<<ssssccccssssllll____bbbbllllaaaassss____iiii8888....hhhh>>>> header file should be included. DDDDEEEESSSSCCCCRRRRIIIIPPPPTTTTIIIIOOOONNNN These routines solve one of the following systems of equations, using the operation associated with each: EEEEqqqquuuuaaaattttiiiioooonnnnssss OOOOppppeeeerrrraaaattttiiiioooonnnn _A_x=_b _x <- _A-_1_x _A_T_x=_b _x <- _A-_T_x _A_H_x=_b _x <- _A-_H_x (CCCCTTTTPPPPSSSSVVVV, ZZZZTTTTPPPPSSSSVVVV only) where * _b and _x are _n-element vectors * _A is either a unit or nonunit _n-by-_n upper or lower triangular band matrix with (_k+1) diagonals * _A-_1 is the inverse of _A * _A_T is the transpose of _A * _A-_T is the inverse of _A_T * _A_H is the conjugate transpose of _A PPPPaaaaggggeeee 2222 SSSSTTTTPPPPSSSSVVVV((((3333SSSS)))) SSSSTTTTPPPPSSSSVVVV((((3333SSSS)))) * _A-_H is the inverse of _A_H On input, the right-hand side vector _b is stored in the array argument _x. On output, the solution vector _x overwrites _b in the same array argument _x. See the NOTES section of this man page for information about the interpretation of the data types described in the following arguments. These routines have the following arguments: _u_p_l_o Character. (input) Specifies whether the matrix is an upper or lower triangular matrix, as follows: _u_p_l_o = 'U' or 'u': _A is an upper triangular matrix. _u_p_l_o = 'L' or 'l': _A is a lower triangular matrix. For C/C++, a pointer to this character is passed. _t_r_a_n_s Character. (input) Specifies the operation to be performed, as follows: _t_r_a_n_s = 'N' or 'n': _x <- _A-_1_x _t_r_a_n_s = 'T' or 't': _x <- _A-_T_x _t_r_a_n_s = 'C' or 'c': _x <- _A-_T_x (SSSSTTTTPPPPSSSSVVVV, DDDDTTTTPPPPSSSSVVVV), or _x <- _A-_H_x (CCCCTTTTPPPPSSSSVVVV, ZZZZTTTTPPPPSSSSVVVV) For C/C++, a pointer to this character is passed. _d_i_a_g Character. (input) Specifies whether _A is unit triangular, as follows: _d_i_a_g = 'U' or 'u': _A is assumed to be unit triangular. _d_i_a_g = 'N' or 'n': _A is not assumed to be unit triangular. For C/C++, a pointer to this character is passed. _n Integer. (input) Specifies the order of matrix _A. _n >= 0. _a_p Array of dimension (_n(_n+1))/2 . (input) SSSSTTTTPPPPSSSSVVVV: Single precision array. DDDDTTTTPPPPSSSSVVVV: Double precision array. CCCCTTTTPPPPSSSSVVVV: Single precision complex array. ZZZZTTTTPPPPSSSSVVVV: Double precision complex array. Before entry with _u_p_l_o = 'U' or 'u', array _a_p must contain the upper triangular matrix packed sequentially, column-by-column, so that _a_p(1) contains _A(1,1), _a_p(2) contains _A(1,2), _a_p(3) PPPPaaaaggggeeee 3333 SSSSTTTTPPPPSSSSVVVV((((3333SSSS)))) SSSSTTTTPPPPSSSSVVVV((((3333SSSS)))) contains _A(2,2), and so on. Before entry with _u_p_l_o = 'L' or 'l', array _a_p must contain the lower triangular matrix packed sequentially, column-by-column, so that _a_p(1) contains _A(1,1), _a_p(2) contains _A(2,1), _a_p(3) contains _A(3,1), and so on. When _d_i_a_g = 'U' or 'u', these routines assume that all elements of array _a that represent diagonal elements of the matrix _A are 1. In this case, neither of these routines will reference any of the diagonal elements. _x Array of dimension 1+(_n-1) * |_i_n_c_x|. (input and output) SSSSTTTTPPPPSSSSVVVV: Single precision array. DDDDTTTTPPPPSSSSVVVV: Double precision array. CCCCTTTTPPPPSSSSVVVV: Single precision complex array. ZZZZTTTTPPPPSSSSVVVV: Double precision complex array. Contains the vector _b, then the vector _x. _i_n_c_x Integer. (input) Specifies the increment for the elements of _x. _i_n_c_x must not be 0. NNNNOOOOTTTTEEEESSSS Tests for singularity or near-singularity are not included in these routines. You must perform such tests before calling either routine. These routines are Level 2 Basic Linear Algebra Subprograms (Level 2 BLAS). When working backward (_i_n_c_x < 0), each routine starts at the end of the vector and moves backward, as follows: _x(1-_i_n_c_x * (_n-1)), _x(1-_i_n_c_x * (_n-2)), ..., _x(1) DDDDaaaattttaaaa TTTTyyyyppppeeeessss The following data types are described in this documentation: Fortran: TTTTeeeerrrrmmmm UUUUsssseeeedddd DDDDaaaattttaaaa ttttyyyyppppeeee Array dimensioned _n XXXX((((nnnn)))) Character CCCCHHHHAAAARRRRAAAACCCCTTTTEEEERRRR Integer IIIINNNNTTTTEEEEGGGGEEEERRRR (IIIINNNNTTTTEEEEGGGGEEEERRRR****8888 for ----llllssssccccssss____iiii8888[[[[____mmmmpppp]]]]) Single precision RRRREEEEAAAALLLL PPPPaaaaggggeeee 4444 SSSSTTTTPPPPSSSSVVVV((((3333SSSS)))) SSSSTTTTPPPPSSSSVVVV((((3333SSSS)))) Double precision DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN Single precision complex CCCCOOOOMMMMPPPPLLLLEEEEXXXX Double precision complex DDDDOOOOUUUUBBBBLLLLEEEE CCCCOOOOMMMMPPPPLLLLEEEEXXXX C/C++: Array dimensioned _n xxxx[[[[_n]]]] Character cccchhhhaaaarrrr Integer iiiinnnntttt (lllloooonnnngggg lllloooonnnngggg for ----llllssssccccssss____iiii8888[[[[____mmmmpppp]]]]) Single precision ffffllllooooaaaatttt Double precision ddddoooouuuubbbblllleeee Single precision complex ssssccccssssllll____ccccoooommmmpppplllleeeexxxx Double precision complex ssssccccssssllll____zzzzoooommmmpppplllleeeexxxx C++ STL: Array dimensioned _n xxxx[[[[_n]]]] Character cccchhhhaaaarrrr Integer iiiinnnntttt (lllloooonnnngggg lllloooonnnngggg for ----llllssssccccssss____iiii8888[[[[____mmmmpppp]]]]) Single precision ffffllllooooaaaatttt Double precision ddddoooouuuubbbblllleeee Single precision complex ccccoooommmmpppplllleeeexxxx<<<<ffffllllooooaaaatttt>>>> Double precision complex ccccoooommmmpppplllleeeexxxx<<<<ddddoooouuuubbbblllleeee>>>> SSSSEEEEEEEE AAAALLLLSSSSOOOO IIIINNNNTTTTRRRROOOO____SSSSCCCCSSSSLLLL(3S), IIIINNNNTTTTRRRROOOO____BBBBLLLLAAAASSSS2222(3S) IIIINNNNTTTTRRRROOOO____CCCCBBBBLLLLAAAASSSS(3S) for information about using the C interface to Fortran 77 Basic Linear Algebra Subprograms (legacy BLAS) set forth by the Basic Linear Algebra Subprograms Technical Forum. PPPPaaaaggggeeee 5555